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A computational solution of hydromagnetic-free convective
flow past a vertical plate in a rotating heat-generating

fluid with Hall and ion-slip currents
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SUMMARY

Taking Hall and ion-slip current into account, the unsteady magnetohydrodynamic heat-generating free
convective flow of a partially ionized gas past an infinite vertical plate in a rotating frame of reference is
investigated theoretically. A computer program using finite elements is employed to solve the coupled non-
linear differential equations for velocity and temperature fields. The effects of Hall and ion-slip currents
as well as the other parameters entering into the problem are discussed extensively and shown graphically.
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1. INTRODUCTION

The study of fluid flows has important applications in engineering. For example, the effect of
an applied magnetic field on unsteady free convection flow along a vertical plate has been given
considerable attention because of its application in the cooling of nuclear reactors or in the study of
the structures of stars and planets. In recent years, considerable interest has been given to the theory
of rotating fluids due to its application in cosmic and geophysical sciences. In an ionized gas where
the density is low and/or the magnetic field is very strong, the effects of Hall and ion-slip currents
play a significant role in the velocity distribution of the flow. The study of magnetohydrodynamic
flows with Hall and ion-slip currents has important engineering applications in the problems of
magnetohydrodynamic generators and of Hall accelerators as well as flight magnetohydrodynamics.
The problem of viscous flows with Hall current has been solved by a number of authors [1–4].
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Naroua et al. [5] looked at the MHD Stokes problem of convective flow from a vertical infinite plate
in a rotating fluid where they proposed a new mathematical formulation. Cookey et al. [6] proposed
a model for the study of MHD free-convection flow past an infinite heated vertical plate in a porous
medium in which they observed that increased cooling of the plate was accompanied with an
increase in the velocity. Taneja and Jain [7] looked at the unsteady MHD flow in a porous medium
in the presence of radiative heat where they obtained expressions for the velocity, temperature and
rate of heat transfer. Ghosh [8] attempted to study the MHD flow of a dusty, electrically conducting,
visco-elastic Rivlin–Ericksen fluid starting from the rest with time-dependent types applied at the
free surface. He solved the problem analytically by using the Laplace transform technique. Debnath
[9–11] has made a good contribution to the unsteady hydrodynamic and hydromagnetic boundary
layer flows with or without Hall current effects in a rotating fluid system. When the conducting
fluid is a partially ionized gas, e.g. water gas seeded with potassium, the Hall and ion-slip currents
are also significant. Hence, the aim of the present work is to study the unsteady free convective
flow of a partially ionized gas past an infinite vertical plate. Here, (i) the plate is subjected to a
constant suction velocity, (ii) the fluid and the plate are in a state of rigid rotation with a uniform
angular velocity � about the z′-axis, (iii) a strong magnetic field of uniform strength is applied
transversely to the direction of the flow and (iv) the heat source Q∗ is of the type Q∗ = Q(T ′∞−T ′).
A computer program using finite elements is employed to solve the coupled non-linear differential
equations for velocity and temperature fields.

2. MATHEMATICAL ANALYSIS

Consider the unsteady MHD free-convective flow of a partially ionized fluid past an infinite vertical
plate when the fluid and the plate rotate in unison with a constant angular velocity � about z′-axis
taken normal to the plate as shown in Figure 1.
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        w 

v 
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Figure 1. The flow configuration with the coordinate system.
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A uniform strong magnetic field B0 is imposed along the z′-axis and the plate is taken as
electrically non-conducting. Since the plate is infinite in extent, all the physical variables except
pressure depend on z′ and t ′ only. The equation of continuity ∇ · q= 0 gives w′ =−w0 (>0),
where q= (u′, v′, w′). The flow has a low Mach number, and hence the density of the ionized gas
can be taken as constant. However, for such a fluid, the Hall and ion-slip currents significantly
affect the flow in the presence of large magnetic fields. The induced magnetic field is neglected,
since the magnetic Reynolds number of a partially ionized gas is very small [12]. The equation
of conservation of electric change ∇ · J= 0 gives Jz′ = constant, where J= ( jx ′, jy′, jz′). This
constant is zero at the plate, which is electrically non-conducting. Thus, jz′ = 0 everywhere in the
flow. When the strength of the magnetic field is very large, Ohm’s law must be modified to include
Hall and ion-slip currents [13]:

J + �e�e
B0

J×B= �

(
E + �eq × B + 1

e�e
∇ · Pe

)
(1)

where all the physical variables are given in nomenclature. Under the assumption that the electron
pressure (for weakly ionized gas) and the thermoelectric pressure are negligible, Equation (1)
becomes

jx ′ = [�′(Ex ′ + B0v
′) − �′(Ey′ + (U ′ − u′)B0)]�

jy′ = [�′(Ey′ + B0(U
′ − u′) + �′(Ex ′ + B0v

′))]�
(2)

where

�′ = (1 + �e�i)

(1 + �e�i)2 + �2e

�′ = �e
(1 + �e�i)2 + �2e

, �e = �e�e, �i = �i�i

E= (Ex ′, Ey′, Ez′)

(3)

In a rotating frame of reference, the equations of motion and energy are given by

�u′

�t ′
− w0

�u′

�z′
− 2�v′ = �u′

�t ′
+ �

�2u′

�z′2
+ g�(T ′ − T ′∞) + jy′

B0

	
(4)

�v′

�t ′
− w0

�v′

�z′
+ 2�(u′ −U ′) = �

�2v′

�z′2
− 1

	
jx ′B0 (5)

�T ′

�t ′
− w0

�T ′

�z′
= k

	Cp

�2T ′

�z′2
+ Q(T ′∞ − T ) (6)
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The boundary conditions are given by

u′ = 0, v′ = 0, T ′ = Tw at z′ = 0

u′ =U (t), v′ = 0, T ′ = T∞ as z′ → ∞
(7)

Introducing the non-dimensional quantities

z = w0
z′

�
, u = u′

U0
, v = v′

U0
, t = t ′w2

0

�
, U = U ′

U0

w = �
w′

w2
0

, 
 = (T ′ − T ′∞)

(T ′
w − T ′∞)

, Pr= 	�
Cp

K

Er= ��

w2
0

, Gr = �g�
(T ′

w − T ′∞)

U0w
2
0

, M2 = �B2
0�

	w2
0

, � = Q�2

kw2
0

E= Ex + iEy, M1 = 2Er · i + B2
0

Ex = Ex ′

B0w0
, Ey = Ey′

B0w0
, jx = jx ′

�B0w0
, jy = jy′

�B0w0

�0 = �′ + i�′, B2
0 = M2�0

(8)

and using Equation (2) in Equations (4)–(6), we have

�q
�t

− �q
�z

+ M1(q −U ) = �U
�t

+ �2q
�z2

+ Gr 
 − M2

U0
iw0�0E (9)

Neglecting the electric field E= 0, we have

�q
�t

− �q
�z

+ M1(q −U ) = �U
�t

+ �2q
�z2

+ Gr 
 (10)

Pr
�


�t
− Pr

�


�z
= �2


�z2
− �
 (11)

where q = u + iv.
The corresponding boundary conditions are given by

q = 0, 
 = 1 at z = 0

q →U (t) = 1 + � eiwt , 
 → 0 as z → ∞
(12)

where � � 1.
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The above system of Equations (10) and (11) with boundary conditions (12) has been solved
numerically by a computer program using the finite element method in Steps 1 and 2.

Step 1: We solve Equation (11) with the help of boundary conditions (12). Constructing the
quasi-variational statement of Equation (11), we have

0=
∫

�
i

{
Pr

�


�t
− Pr

�


�z
− �2


�z2
+ �


}
dz (13)

where i is the test function and � is the region of the flow.
Consider an N -element mesh and a two-parameter (semi-discrete) Galerkin approximation [14]

of the form


(z, t) =
5∑
j=1

C j (t) j (z) (14)

with

(i)
1 (z) = (zi+1 − z)

(zi+1 − zi )

(i)
2 (z) = (z − zi )

(zi+1 − zi )

(15)

where i = 1, 2, 3, . . . , N and zi and zi+1 are, respectively, the lower and upper coordinates of the
element i .

Using Equations (14) and (15), Equation (13) reduces to

[A]
{

�C
�t

}
+ [B]{C}= {P} (16)

where

Ai j =
∫

�
Pri j dz

Bi j =
∫

�

(
−Pri

� j

�z
+ �i

�z

� j

�z
− �i j

)
dz

Pi = 0

(17)

Using the �-family of approximation developed by Reddy [14], Equation (16) reduces to

[ Â]{C}n+1 =[B̂]{C}n + {P̂} (18)

where

[ Â] = [A] + ��t[B]
[B̂] = [A] − (1 − �)�t[B]
[P̂] = �t[�{P}n+1 + (1 − �){P}n]

(19)
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Figure 2. Transient primary velocity profiles (u) at Gr= 10.

The initial value C0 is obtained by the Galerkin method from a 32-element mesh and is given by

C0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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Figure 3. Transient secondary velocity profiles (v) at Gr= 10.

For t>0,

{C}n+1 =[ Â−1][B]{C}n + [ Â−1]{P̂} (21)

Step 2: We solve Equation (10) with the help of boundary conditions (12). Constructing the
quasi-variational statement of Equation (10), we have

0=
∫

�
�i

{
�q
�t

− �q
�z

+ M1(q −U ) − �2q
�z2

− Gr 
 − �U
�t

}
dz (22)

where �i is the test function and � is the region of the flow.
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Figure 4. Transient primary velocity profiles (u) at Gr=−10.

Consider a two-parameter (semi-discrete) Galerkin approximation of the form

q(z, t) =
N∑
j=1

d j (t)� j (z) (23)

with

�(i)
1 (z) = (zi+1 − z)

(zi+1 − zi )
(1 + i)

�(i)
2 (z) = (z − zi )

(zi+1 − zi )
(1 + i)

(24)

where i = 1, 2, 3, . . . , N and zi and zi+1 are, respectively, the lower and upper coordinates of the
element i .
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Figure 5. Transient secondary velocity profiles (v) at Gr= −10.

Using Equations (23) and (24), Equation (22) reduces to

[ Ā]
{

�d
�t

}
+ [B̄]{d} = {P̄} (25)

where

Āi j =
∫

�
�i� j dz

B̄i j =
∫

�

(
−�i

�� j

�z
+ ��i

�z
�� j

�z
+ M1�i� j

)
dz

(26)

P̄i =
∫

�
�i

(
Gr 
 + M1U + �U

�t

)
dz
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Using the �-family of operators developed by Reddy [14], Equation (25) takes the form

{d}n+1 =[ ˆ̄A−1][ ˆ̄B]{d}n + [ ˆ̄A−1]{ ˆ̄P} (27)

where

d0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

...

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

The numerical values of the temperature and velocity fields have been computed from
Equations (21) and (27) and are shown in Figures 2–6.
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3. DISCUSSION OF RESULTS

In order to get a physical insight into the problem and for the purpose of discussing the results,
numerical calculations have been carried out for the velocity and temperature profiles and are
displayed in Figures 2–6. The numerical method used (the Galerkin finite element method) is
unconditionally stable and it is independent of the time step �t . The figures show the velocity
and temperature distributions for constant magnetic field (M2 = 5.0). The velocity profiles are
examined for the cases Gr>0 and Gr<0. Gr>0 ( = 10) is used for the case when the flow is in the
presence of cooling of the plate by free convection currents. Gr<0 ( = −10) is used for the case
when the flow is in the presence of heating of the plate by free convection currents.

From Figures 2 and 4, for the case Gr= ±10, it is observed that:

i. The primary velocity profile (u) decreases due to an increase in the Hall parameter (�e) and
the ion-slip parameter (�i).

ii. There is an insignificant change in the primary velocity profile (u) due to an increase in the
Prandtl number (Pr), the rotation parameter (Er) and the heat-generating parameter (�).

iii. The primary velocity profile (u) increases with time (t) for Gr>0 (in the presence of cooling
of the plate by free convection currents), whereas it decreases with time (t) for Gr<0
(in the presence of heating of the plate by free convection currents).

From Figures 3 and 5, for the case Gr= ±10, it is observed that:

i. The secondary velocity profile (v) decreases due to an increase in the Hall parameter (�e)
and the ion-slip parameter (�i) whereas it increases due to an increase in the time (t) and
the rotation parameter (Er).

ii. There is an insignificant change in the secondary velocity profile (v) due to an increase in
the Prandtl number (Pr) and the heat-generating parameter (�).

From Figure 6, we observed that:

i. The temperature (
) decreases away from the plate. The decrease is greater for a Newtonian
fluid than it is for a non-Newtonian fluid (
 decreases with Pr).

ii The temperature profile (
) increases due to an increase in the heat-generating parameter (�)

and the time (t).

NOMENCLATURE

� electric conductivity
�e magnetic permeability
�e cyclotron frequency
�e electron collision time
e electric charge
�e number density of electron
Pe electron pressure
E electric field
j̄ electrical current density
B̄ magnetic induction
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z spatial coordinate
t time coordinate
u non-dimensional primary velocity
v non-dimensional secondary velocity

 non-dimensional temperature
� heat-generating parameter
Pr Prandtl number
Gr Grashof number
Er rotation parameter
M2 magnetic parameter
�e, �i Hall parameter, ion-slip parameter
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